登录  
 加关注
查看详情
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

朱振刚 日记

色谱仪,光谱仪,红外线分析器制造

 
 
 

日志

 
 

运算放大器 噪声 测量 (转载)  

2012-06-01 20:20:48|  分类: 默认分类 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |
许多产品说明书都规定了从 0.1 Hz 到 10 Hz 的峰至峰噪声参数。这有效地给出了运算放大器的低频(也就是 1/f 噪声)概念。在一些情况下将以示波器波形形式给出;而在其它情况下,则以参数表形式列出。图 6.10 显示了一种测量从 0.1Hz 到 10Hz 噪声的有效方法。该电路采用了二阶 0.1Hz 高通与四阶 10Hz 低通串联滤波器,增益为 100。所测设备 (OPA227) 置于高增益配置(噪声增益=1001)下,因为预计 1/f 噪声很小,并且必须放大到可用标准测试设备进行测量的范围内。请注意,图 6.10 中电路的总增益为 100100(也就是 100x1001)。因此,输出信号应除以 100100 以将信号复原到输入。
示波器显示的结果

图  6.10:示波器显示的结果

  图 6.11 中所示电路的所测输出如图 6.12 所示。图 6.12 为从 OPA227 产品说明书中截取的一张图表。所测结果的范围可除以总增益,以得出运算放大器的输入范围(也就是,5mV/100100 = 50nV)。请注意,实际产品说明书曲线与期望的产品说明书曲线有很好的一致性。

低频噪声测量测试电路

图  6.11:低频噪声测量测试电路

低频噪声测量测试电路结果

图  6.12:低频噪声测量测试电路结果

  低频噪声测量中的失调温度漂移与 1/f 噪声的关系

  测量放大器 1/f 噪声的一个难题是:我们通常很难将 1/f 噪声与失调温度漂移分离开来。请注意,在典型的实验室环境下,周围环境温度会有 ±3C 的波动。设备周围的气流会造成失调电压的低频变化,与 1/f 噪声看上去很类似。图 6.12 比较了 OPA132 在热稳定环境下与在典型实验室环境下的输出。假设最坏情况下的运算放大器漂移,在典型实验室环境下,失调电压漂移将为 60uV 左右(根据产品说明书(10uV/C)(6C) = 60uV)。图 6.12 中的放大器增益为 100,因此输出漂移的近似值为 6mV(即 (60uV)(100) = 6mV)。

  将失调电压漂移的效应从 1/f 噪声中分离开来的一种方法是将所测设备置入一个热稳定环境中。该环境必须在整个测量过程中,都保持设备的温度恒定(变化范围在 ±0.1C 内),并且也应尽可能减少温度梯度。实现该目的的一个简单方法是将电子惰性填充液注入到漆罐中,并在整个测试过程中都将设备浸在液体中。热传导氟化液通常可用于该类型的测试,因为它们的电阻很高,热阻抗也很高。并且,它们也是生物惰性材料,并且无毒性[2]。

OPA132 在实验室与热稳定环境中的表现

图  6.13: OPA132 在实验室与热稳定环境中的表现

  测量 OPA627 的噪声频谱密度曲线

  正如我们在本丛书中见到的,在噪声分析中频谱密度参数是一种特别重要的工具。尽管绝大多数的产品说明书都提供了该信息,但工程师有时也会进行实际测量,以验证公布的数据。图 6.14 中的电路显示了一种简单的测试结构,可以对电压噪声频谱密度进行测量。

  请注意,用于本测量的频谱分析仪的带宽是从 0.064Hz 到 100kHz。这样的带宽范围可对许多放大器的 1/f 区和宽带区进行特征测量。此外,请注意频谱分析仪内部配置为直流耦合模式,而不是交流耦合模式,因为它的下限截止频率为 1Hz,1/f时的读数精度不高。然而,还是应将运算放大器电路与频谱分析仪进行交流耦合,因为相对噪声来说,直流失调电压很大。因此,运算放大器电路结合使用外部耦合电容 C1 和频谱分析仪的输入阻抗 R3 进行交流耦合。该电路的下限截止频率为 0.008Hz(这对我们的 1/f 测量不会造成干扰,因为频谱分析仪的最小频率为 0.064Hz)。请注意 C1 实际上是并联的多个陶瓷电容(不推荐在本应用中使用电解质电容和钽电容)。

  图 6.14 中放大器配置的另一个考虑因素是反馈网络的值。第 3 部分中我们说过并联 R1 和 R2 (Req = R1||R2) 用于热噪声和偏置电流噪声的计算。该阻抗的数值应最小化,以使得所测噪声为运算放大器电压噪声(也就是说,偏置电流噪声和电阻热噪声的影响可忽略不计)。

运算放大器噪声频谱密度的测量电路

图  6.14:运算放大器噪声频谱密度的测量电路

  在所有的噪声测量中,要检验频谱分析仪的噪声底限是否小于运算放大器电路。图 6.14 所示例子中,放大器的增益是 100,以将输出噪声提高到频谱分析仪的噪声底限之上。请谨记该配置会限制高频带宽(带宽=增益带宽乘积/增益=16MHz/100=160kHz),从而,噪声频谱密度曲线将在较低频率时呈现下降趋势。图 6.14 中的例子并不受这一问题的影响,因为高频下降趋势在频谱分析仪带宽之外产生(噪声频谱下降趋势出现在 160kHz,而频谱分析仪的最大带宽是 100kHz)。



  评论这张
 
阅读(521)| 评论(0)

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2018